MHD Supernova Jets: The Missing Link
نویسندگان
چکیده
We review recent progress in the theory of jet production, with particular emphasis on the possibility of 1) powerful jets being produced in the first few seconds after collapse of a supernova core and 2) those jets being responsible for the asymmetric explosion itself. The presently favored jet-production mechanism is an electrodynamic one, in which charged plasma is accelerated by electric fields that are generated by a rotating magnetic field anchored in the protopulsar. Recent observations of Galactic jet sources provide important clues to how all such sources may be related, both in the physical mechanism that drives the jet in the astrophysical mechanisms that create conditions conducive to jet formation. We propose a grand evolutionary scheme that attempts to unify these sources on this basis, with MHD supernovae providing the missing link. We also discuss several important issues that must be resolved before this (or another scheme) can be adopted. 1.
منابع مشابه
Simulations of Magnetically-driven Supernova and Hypernova Explosions in the Context of Rapid Rotation
We present here the first 2D rotating, multi-group, radiation magnetohydrodynamics (RMHD) simulations of supernova core collapse, bounce, and explosion. In the context of rapid rotation, we focus on the dynamical effects of magnetic stresses and the creation and propagation of MHD jets. We find that a quasi-steady state can be quickly established after bounce, during which a well-collimated MHD...
متن کاملMagnetar-energized supernova explosions and GRB-jets
In this paper we report on the early evolution of a core-collapse supernova explosion following the birth of a magnetar with the dipolar magnetic field of B = 10G and the rotational period of 2ms, which was studied by means of axisymmetric general relativistic MHD simulations. In this study we use realistic EOS and take into account the cooling and heating associated with emission, absorption, ...
متن کاملEffect of the temperature profile of the accretion disk on the structure of jets and outflows around protostars
Magnetic fields play an important role in creating, driving, and in the evolution of outflows and jets from protostars and accretion disks. On the other hand, the temperature profile of the accretion disks may also affect the structure of the magnetic field and outflows. In this paper, we use the self-similar method in cylindrical coordinates to investigate the effect of the temperature profile...
متن کاملMagnetized Astrophysical Outflows: Cradle to Grave, Source to Effect
We discuss the propagation of radiative MHD jets and outflows focusing on outflows driven by magnetocentrifugal rotators. Our goal is to link the properties of the jets with the physics of the sources which produce them. We find that density and magnetic field stratification (with radius) in jets from magnetized rotators leads to new behavior including the development of a dense inner jet core ...
متن کاملThe Acceleration Mechanism of Resistive Mhd Jets Launched from Accretion Disks
We analyzed the results of non-linear resistive magnetohydrodynamical (MHD) simulations of jet formation to study the acceleration mechanism of axisymmetric, resistive MHD jets. The initial state is a constant angular momentum, polytropic torus threaded by weak uniform vertical magnetic fields. The time evolution of the torus is simulated by applying the CIP-MOCCT scheme extended for resistive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003